Python实现GIF动图以及视频卡通化详解
本文主要介绍了如何使用Python中的animegan2-pytorch实现动图以及视频的卡通化效果,文中的代码具有一定的学习价值,需要的朋友可以参考一下
目录
前言
环境依赖
核心代码
gif动图卡通化
视频卡通化
总结
前言
参考文章:Python实现照片卡通化
我继续魔改一下,让该模型可以支持将gif动图或者视频,也做成卡通化效果。毕竟一张图可以那就带边视频也可以,没毛病。所以继给次元壁来了一拳,我在加两脚。
项目github地址:github地址
环境依赖
除了参考文章中的依赖,还需要加一些其他依赖,requirements.txt如下:
其他环境不太清楚的,可以看我前言链接地址的文章,有具体说明。
核心代码
不废话了,先上gif代码。
gif动图卡通化
实现代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2021/12/5 18:10 # @Author : 剑客阿良_ALiang # @Site : # @File : gif_cartoon_tool.py # !/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2021/12/5 0:26 # @Author : 剑客阿良_ALiang # @Site : # @File : video_cartoon_tool.py # !/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2021/12/4 22:34 # @Author : 剑客阿良_ALiang # @Site : # @File : image_cartoon_tool.py from PIL import Image, ImageEnhance, ImageSequence import torch from torchvision.transforms.functional import to_tensor, to_pil_image from torch import nn import os import torch.nn.functional as F import uuid import imageio # -------------------------- hy add 01 -------------------------- class ConvNormLReLU(nn.Sequential): def __init__( self , in_ch, out_ch, kernel_size = 3 , stride = 1 , padding = 1 , pad_mode = "reflect" , groups = 1 , bias = False ): pad_layer = { "zero" : nn.ZeroPad2d, "same" : nn.ReplicationPad2d, "reflect" : nn.ReflectionPad2d, } if pad_mode not in pad_layer: raise NotImplementedError super (ConvNormLReLU, self ).__init__( pad_layer[pad_mode](padding), nn.Conv2d(in_ch, out_ch, kernel_size = kernel_size, stride = stride, padding = 0 , groups = groups, bias = bias), nn.GroupNorm(num_groups = 1 , num_channels = out_ch, affine = True ), nn.LeakyReLU( 0.2 , inplace = True ) ) class InvertedResBlock(nn.Module): def __init__( self , in_ch, out_ch, expansion_ratio = 2 ): super (InvertedResBlock, self ).__init__() self .use_res_connect = in_ch = = out_ch bottleneck = int ( round (in_ch * expansion_ratio)) layers = [] if expansion_ratio ! = 1 : layers.append(ConvNormLReLU(in_ch, bottleneck, kernel_size = 1 , padding = 0 )) # dw layers.append(ConvNormLReLU(bottleneck, bottleneck, groups = bottleneck, bias = True )) # pw layers.append(nn.Conv2d(bottleneck, out_ch, kernel_size = 1 , padding = 0 , bias = False )) layers.append(nn.GroupNorm(num_groups = 1 , num_channels = out_ch, affine = True )) self .layers = nn.Sequential( * layers) def forward( self , input ): out = self .layers( input ) if self .use_res_connect: out = input + out return out class Generator(nn.Module): def __init__( self , ): super ().__init__() self .block_a = nn.Sequential( ConvNormLReLU( 3 , 32 , kernel_size = 7 , padding = 3 ), ConvNormLReLU( 32 , 64 , stride = 2 , padding = ( 0 , 1 , 0 , 1 )), ConvNormLReLU( 64 , 64 ) ) self .block_b = nn.Sequential( ConvNormLReLU( 64 , 128 , stride = 2 , padding = ( 0 , 1 , 0 , 1 )), ConvNormLReLU( 128 , 128 ) ) self .block_c = nn.Sequential( ConvNormLReLU( 128 , 128 ), InvertedResBlock( 128 , 256 , 2 ), InvertedResBlock( 256 , 256 , 2 ), InvertedResBlock( 256 , 256 , 2 ), InvertedResBlock( 256 , 256 , 2 ), ConvNormLReLU( 256 , 128 ), ) self .block_d = nn.Sequential( ConvNormLReLU( 128 , 128 ), ConvNormLReLU( 128 , 128 ) ) self .block_e = nn.Sequential( ConvNormLReLU( 128 , 64 ), ConvNormLReLU( 64 , 64 ), ConvNormLReLU( 64 , 32 , kernel_size = 7 , padding = 3 ) ) self .out_layer = nn.Sequential( nn.Conv2d( 32 , 3 , kernel_size = 1 , stride = 1 , padding = 0 , bias = False ), nn.Tanh() ) def forward( self , input , align_corners = True ): out = self .block_a( input ) half_size = out.size()[ - 2 :] out = self .block_b(out) out = self .block_c(out) if align_corners: out = F.interpolate(out, half_size, mode = "bilinear" , align_corners = True ) else : out = F.interpolate(out, scale_factor = 2 , mode = "bilinear" , align_corners = False ) out = self .block_d(out) if align_corners: out = F.interpolate(out, input .size()[ - 2 :], mode = "bilinear" , align_corners = True ) else : out = F.interpolate(out, scale_factor = 2 , mode = "bilinear" , align_corners = False ) out = self .block_e(out) out = self .out_layer(out) return out # -------------------------- hy add 02 -------------------------- def handle(gif_path: str , output_dir: str , type : int , device = 'cpu' ): _ext = os.path.basename(gif_path).strip().split( '.' )[ - 1 ] if type = = 1 : _checkpoint = './weights/paprika.pt' elif type = = 2 : _checkpoint = './weights/face_paint_512_v1.pt' elif type = = 3 : _checkpoint = './weights/face_paint_512_v2.pt' elif type = = 4 : _checkpoint = './weights/celeba_distill.pt' else : raise Exception( 'type not support' ) os.makedirs(output_dir, exist_ok = True ) net = Generator() net.load_state_dict(torch.load(_checkpoint, map_location = "cpu" )) net.to(device). eval () result = os.path.join(output_dir, '{}.{}' . format (uuid.uuid1(). hex , _ext)) img = Image. open (gif_path) out_images = [] for frame in ImageSequence.Iterator(img): frame = frame.convert( "RGB" ) with torch.no_grad(): image = to_tensor(frame).unsqueeze( 0 ) * 2 - 1 out = net(image.to(device), False ).cpu() out = out.squeeze( 0 ).clip( - 1 , 1 ) * 0.5 + 0.5 out = to_pil_image(out) out_images.append(out) # out_images[0].save(result, save_all=True, loop=True, append_images=out_images[1:], duration=100)
|