阅读 235

使用 C++ 查找按位 OR >= K 的子数组的数量

在本文中,我们将简要说明在 C++ 中解决按位 OR>=K 的子数组的数量。所以我们有一个数组 arr[] 和一个整数 K,我们必须找到OR(bitwise or)大于或等于 K的子数组的数量。所以这里是给定问题的例子 -


Input: arr[] = {1, 2, 3} K = 3Output: 4Bitwise OR of sub-arrays:{1} = 1{1, 2} = 3{1, 2, 3} = 3{2} = 2{2, 3} = 3{3} = 34 sub-arrays have bitwise OR ≥ 3Input: arr[] = {3, 4, 5} K = 6Output: 2


寻找解决方案的方法

现在我们将使用两种不同的方法来使用 C++ 解决问题 -

蛮力

在这种方法中,我们将简单地遍历所有可以形成的子数组并检查 OR 是否大于或等于 K。如果是,那么我们将增加我们的答案。

示例


#include <bits/stdc++.h>using namespace std;int main(){
    int arr[] = {1, 2, 3}; // 给定数组。    int k = 3;
    int size = sizeof(arr) / sizeof(int); // 我们数组的大小。    int answer = 0; // 计数器变量。    for(int i = 0; i < size; i++){
        int bitwise = 0; // 我们与 k 比较的变量。        for(int j = i; j < size; j++){ // 从 i 开始的所有子数组。            bitwise = bitwise | arr[j];
            if(bitwise >= k) // if bitwise >= k increment answer.               answer++;
        }
    }
    cout << answer << "\n";
    return 0;
}

输出结果

4


这种方法非常简单,但它有它的缺陷,因为这种方法对于更高的约束不是很好,因为这种方法的时间复杂度是O(N*N),其中 N 是给定数组的大小,所以现在我们要寻找一种有效的方法。

有效的方法

在这种方法中,我们将使用 OR 运算符的一些属性,即即使我们添加更多数字它也不会减少,因此如果我们从 i 到 j 得到一个 OR 大于或等于 K 的子数组,那么每个包含范围 {i,j} 的子数组的 OR 大于 K,我们正在利用此属性并改进我们的代码。

示例


#include <bits/stdc++.h>#define N 1000using namespace std;int t[4*N];void build(int* a, int v, int start, int end){ // 分段树构建    if(start == end){
       t[v] = a[start];
       return;
    }
    int mid = (start + end)/2;
    build(a, 2 * v, start, mid);
    build(a, 2 * v + 1, mid + 1, end);
    t[v] = t[2 * v] | t[2 * v + 1];
}int query(int v, int tl, int tr, int l, int r){ // 用于处理我们的查询或子数组。    if (l > r)
       return 0;
    if(tl == l && tr == r)
       return t[v];
    int tm = (tl + tr)/2;
    int q1 = query(2*v, tl, tm, l, min(tm, r));
    int q2 = query((2*v)+1, tm+1, tr, max(tm+1, l), r);
    return q1 | q2;
}int main(){
    int arr[] = {1, 2, 3}; // 给定数组。    int k = 3;
    int size = sizeof(arr) / sizeof(arr[0]); // 我们数组的大小。    int answer = 0; // 计数器变量。    build(arr, 1, 0, size - 1); // 构建段树。    for(int i = 0; i < size; i++){
        int start = i, end = size-1;
        int ind = INT_MAX;
        while(start <= end){ // 二分查找            int mid = (start + end) / 2;
            if(query(1, 0, size-1, i, mid) >= k){ // 检查子数组。               ind = min(mid, ind);
               end = mid - 1;
            }
            else               start = mid + 1;
        }
        if(ind != INT_MAX) // 如果 ind 改变,则增加答案。            answer += size - ind;
    }
    cout << answer << "\n";
    return 0;
}

输出结果

4


在这种方法中,我们使用二分搜索和段树,这有助于将时间复杂度从O(N*N) 降低到 O( Nlog(N)),这是非常好的。现在,与前一个程序不同,该程序还可以用于更大的约束。

结论

在本文中,我们nlog(n)使用二叉搜索和分段树解决了一个问题,即在 O( ) 时间复杂度中找到 OR >= K 的子数组的数量。我们还学习了针对这个问题的 C++ 程序以及我们解决这个问题的完整方法(普通和高效)。我们可以用


文章分类
百科问答
版权声明:本站是系统测试站点,无实际运营。本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 XXXXXXo@163.com 举报,一经查实,本站将立刻删除。
相关推荐