阅读 210

Rust 生命周期

Rust 生命周期机制是与所有权机制同等重要的资源管理机制。

之所以引入这个概念主要是应对复杂类型系统中资源管理的问题。

引用是对待复杂类型时必不可少的机制,毕竟复杂类型的数据不能被处理器轻易地复制和计算。

但引用往往导致极其复杂的资源管理问题,首先认识一下垂悬引用:

示例

{
    let r;

    {
        let x = 5;
        r = &x;
    }

    println!("r: {}", r);
}

这段代码是不会通过 Rust 编译器的,原因是 r 所引用的值已经在使用之前被释放。

上图中的绿色范围 'a 表示 r 的生命周期,蓝色范围 'b 表示 x 的生命周期。很显然,'b 比 'a 小得多,引用必须在值的生命周期以内才有效。

一直以来我们都在结构体中使用 String 而不用 &str,我们用一个案例解释原因:

示例

fn longer(s1: &str, s2: &str) -> &str {
    if s2.len() > s1.len() {
        s2
    } else {
        s1
    }
}

longer 函数取 s1 和 s2 两个字符串切片中较长的一个返回其引用值。但只这段代码不会通过编译,原因是返回值引用可能会返回过期的引用:

示例

fn main() {
    let r;
    {
        let s1 = "rust";
        let s2 = "ecmascript";
        r = longer(s1, s2);
    }
    println!("{} is longer", r);
}

这段程序中虽然经过了比较,但 r 被使用的时候源值 s1 和 s2 都已经失效了。当然我们可以把 r 的使用移到 s1 和 s2 的生命周期范围以内防止这种错误的发生,但对于函数来说,它并不能知道自己以外的地方是什么情况,它为了保障自己传递出去的值是正常的,必选所有权原则消除一切危险,所以 longer 函数并不能通过编译。

生命周期注释

生命周期注释是描述引用生命周期的办法。

虽然这样并不能够改变引用的生命周期,但可以在合适的地方声明两个引用的生命周期一致。

生命收起注释用单引号开头,跟着一个小写字母单词:

&i32        // 常规引用&'a i32     // 含有生命周期注释的引用&'a mut i32 // 可变型含有生命周期注释的引用

让我们用生命周期注释改造 longer 函数:

示例

fn longer<'a>(s1: &'a str, s2: &'a str) -> &'a str {
    if s2.len() > s1.len() {
        s2
    } else {
        s1
    }
}

我们需要用泛型声明来规范生命周期的名称,随后函数返回值的生命周期将与两个参数的生命周期一致,所以在调用时可以这样写:

示例

fn main() {
    let r;
    {
        let s1 = "rust";
        let s2 = "ecmascript";
        r = longer(s1, s2);
        println!("{} is longer", r);
    }
}

以上两段程序结合的运行结果:

ecmascript is longer

注意:别忘记了自动类型判断的原则。

结构体中使用字符串切片引用

这是之前留下的疑问,在此解答:

示例

fn main() {
    struct Str<'a> {
        content: &'a str    }
    let s = Str {
        content: "string_slice"    };
    println!("s.content = {}", s.content);
}

运行结果:

s.content = string_slice

如果对结构体 Str 有方法定义:

示例

impl<'a> Str<'a> {
    fn get_content(&self) -> &str {
        self.content
    }
}

这里返回值并没有生命周期注释,但是加上也无妨。这是一个历史问题,早期 Rust 不支持生命周期自动判断,所有的生命周期必须严格声明,但主流稳定版本的 Rust 已经支持了这个功能。

静态生命周期

生命周期注释有一个特别的:'static 。所有用双引号包括的字符串常量所代表的精确数据类型都是 &'static str ,'static 所表示的生命周期从程序运行开始到程序运行结束。

泛型、特性与生命周期协同作战

示例

use std::fmt::Display;fn longest_with_an_announcement<'a, T>(x: &'a str, y: &'a str, ann: T) -> &'a str    where T: Display
{
    println!("Announcement! {}", ann);
    if x.len() > y.len() {
        x
    } else {
        y
    }
}

这段程序出自 Rust 圣经,是一个同时使用了泛型、特性、生命周期机制的程序,不强求,可以体验,毕竟早晚用得到!


文章分类
代码人生
文章标签
版权声明:本站是系统测试站点,无实际运营。本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 XXXXXXo@163.com 举报,一经查实,本站将立刻删除。
相关推荐