阅读 151

84-预测分析-R语言实现-支持向量机

> library(pacman)
> p_load(dplyr, readr, caret)

1、导入数据

使用生物降解数据集,包含41个数值型变量,描述了1055种化学品的分子组成及属性。
建模的任务是根据这些属性来预测某个特定化学品是否会生物降解。

> bdf <- read_csv2("data_set/biodeg.csv", col_names = F)
> attr(bdf, "spec") <- NULL
> str(bdf)
## tibble [1,055 × 42] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ X1 : num [1:1055] 3919 417 3932 3 4236 ...
##  $ X2 : chr [1:1055] "2.6909" "2.1144" "3.2512" "2.7098" ...
##  $ X3 : num [1:1055] 0 0 0 0 0 0 1 0 0 0 ...
##  $ X4 : num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X5 : num [1:1055] 0 0 0 0 0 0 0 0 0 1 ...
##  $ X6 : num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X7 : num [1:1055] 0 0 0 0 0 0 0 0 2 2 ...
##  $ X8 : num [1:1055] 314 308 267 20 294 286 111 316 444 412 ...
##  $ X9 : num [1:1055] 2 1 2 0 2 2 0 3 2 0 ...
##  $ X10: num [1:1055] 0 1 4 2 4 4 3 2 0 4 ...
##  $ X11: num [1:1055] 0 0 0 0 0 0 0 0 0 3 ...
##  $ X12: chr [1:1055] "0" "0" "0" "0" ...
##  $ X13: num [1:1055] 3106 2461 3279 21 3449 ...
##  $ X14: chr [1:1055] "2.55" "1.393" "2.585" "0.918" ...
##  $ X15: num [1:1055] 9002 8723 911 6594 9528 ...
##  $ X16: num [1:1055] 0 1 0 0 2 1 0 5 0 8 ...
##  $ X17: chr [1:1055] "0.96" "0.989" "1.009" "1.108" ...
##  $ X18: num [1:1055] 1142 1144 1152 1167 1147 ...
##  $ X19: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X20: num [1:1055] 0 0 0 0 0 0 0 0 0 1 ...
##  $ X21: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X22: chr [1:1055] "1.201" "1.104" "1.092" "1.024" ...
##  $ X23: num [1:1055] 0 1 0 0 0 0 0 0 1 1 ...
##  $ X24: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X25: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X26: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X27: num [1:1055] 1932 2214 1942 1414 1985 ...
##  $ X28: chr [1:1055] "0.011" "-0.204" "-0.008" "1.073" ...
##  $ X29: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X30: num [1:1055] 0 0 0 8361 10348 ...
##  $ X31: chr [1:1055] "4.489" "1.542" "4.891" "1.333" ...
##  $ X32: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X33: num [1:1055] 0 0 0 0 0 0 0 0 0 1 ...
##  $ X34: num [1:1055] 0 0 0 0 0 0 0 0 0 2 ...
##  $ X35: num [1:1055] 0 0 1 1 0 0 1 0 0 1 ...
##  $ X36: num [1:1055] 2949 3315 3076 3046 3351 ...
##  $ X37: num [1:1055] 1591 1967 2417 5 2405 ...
##  $ X38: num [1:1055] 0 0 0 0 0 0 0 0 0 1 ...
##  $ X39: num [1:1055] 7253 7257 7601 669 8003 ...
##  $ X40: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X41: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X42: chr [1:1055] "RB" "RB" "RB" "RB" ...
> table(bdf$X42)
## 
## NRB  RB 
## 699 356

最后一列X42包含了输出变量,不可生物降解为NRB,可生物降解为RB,需要转换为因子型。其他数值型中有的也被识别为字符型,需要手动转换为数值型。

> bdf$X42 <- factor(bdf$X42, levels = c("RB", "NRB"), labels = c(0, 1))
> 
> bdf <- mutate(bdf, across(where(is.character), as.numeric))
> 
> str(bdf)
## tibble [1,055 × 42] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ X1 : num [1:1055] 3919 417 3932 3 4236 ...
##  $ X2 : num [1:1055] 2.69 2.11 3.25 2.71 3.39 ...
##  $ X3 : num [1:1055] 0 0 0 0 0 0 1 0 0 0 ...
##  $ X4 : num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X5 : num [1:1055] 0 0 0 0 0 0 0 0 0 1 ...
##  $ X6 : num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X7 : num [1:1055] 0 0 0 0 0 0 0 0 2 2 ...
##  $ X8 : num [1:1055] 314 308 267 20 294 286 111 316 444 412 ...
##  $ X9 : num [1:1055] 2 1 2 0 2 2 0 3 2 0 ...
##  $ X10: num [1:1055] 0 1 4 2 4 4 3 2 0 4 ...
##  $ X11: num [1:1055] 0 0 0 0 0 0 0 0 0 3 ...
##  $ X12: num [1:1055] 0 0 0 0 -0.271 -0.275 0 -0.039 0 -1.29 ...
##  $ X13: num [1:1055] 3106 2461 3279 21 3449 ...
##  $ X14: num [1:1055] 2.55 1.393 2.585 0.918 2.753 ...
##  $ X15: num [1:1055] 9002 8723 911 6594 9528 ...
##  $ X16: num [1:1055] 0 1 0 0 2 1 0 5 0 8 ...
##  $ X17: num [1:1055] 0.96 0.989 1.009 1.108 1.004 ...
##  $ X18: num [1:1055] 1142 1144 1152 1167 1147 ...
##  $ X19: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X20: num [1:1055] 0 0 0 0 0 0 0 0 0 1 ...
##  $ X21: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X22: num [1:1055] 1.2 1.1 1.09 1.02 1.14 ...
##  $ X23: num [1:1055] 0 1 0 0 0 0 0 0 1 1 ...
##  $ X24: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X25: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X26: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X27: num [1:1055] 1932 2214 1942 1414 1985 ...
##  $ X28: num [1:1055] 0.011 -0.204 -0.008 1.073 -0.002 ...
##  $ X29: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X30: num [1:1055] 0 0 0 8361 10348 ...
##  $ X31: num [1:1055] 4.49 1.54 4.89 1.33 5.59 ...
##  $ X32: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X33: num [1:1055] 0 0 0 0 0 0 0 0 0 1 ...
##  $ X34: num [1:1055] 0 0 0 0 0 0 0 0 0 2 ...
##  $ X35: num [1:1055] 0 0 1 1 0 0 1 0 0 1 ...
##  $ X36: num [1:1055] 2949 3315 3076 3046 3351 ...
##  $ X37: num [1:1055] 1591 1967 2417 5 2405 ...
##  $ X38: num [1:1055] 0 0 0 0 0 0 0 0 0 1 ...
##  $ X39: num [1:1055] 7253 7257 7601 669 8003 ...
##  $ X40: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X41: num [1:1055] 0 0 0 0 0 0 0 0 0 0 ...
##  $ X42: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
> # 检查缺失值
> DataExplorer::profile_missing(bdf)
## # A tibble: 42 x 3
##    feature num_missing pct_missing
##    <fct>         <int>       <dbl>
##  1 X1                0           0
##  2 X2                0           0
##  3 X3                0           0
##  4 X4                0           0
##  5 X5                0           0
##  6 X6                0           0
##  7 X7                0           0
##  8 X8                0           0
##  9 X9                0           0
## 10 X10               0           0
## # … with 32 more rows

数据集不存在缺失值。

2、拆分训练集和测试集

> set.seed(123)
> ind <- createDataPartition(bdf$X42, p = 0.8, list = F)
> dtrain <- bdf[ind, ]
> dtest <- bdf[-ind, ]
> 
> dim(dtrain)
## [1] 845  42
> dim(dtest)
## [1] 210  42

3、使用支持向量机模型

3.1 线性核

对特征进行归一化处理(让它们具有0均值和单位方差),消除量纲的影响,尤其是使用径向基核函数时。

> # 先不使用交叉验证
> ct <- trainControl(method = "none")
> set.seed(123)
> fit.linear <- train(X42 ~ ., method = "svmLinear", data = dtrain,
+                     preProc = c("center", "scale"),
+                     trControl = ct)
> fit.linear$finalModel
## Support Vector Machine object of class "ksvm" 
## 
## SV type: C-svc  (classification) 
##  parameter : cost C = 1 
## 
## Linear (vanilla) kernel function. 
## 
## Number of Support Vectors : 297 
## 
## Objective Function Value : -270.7407 
## Training error : 0.130178

Number of Support Vectors : 297,表示成为支持向量的数据点的数量为297个。
查看训练集的正确率。

> mean(predict(fit.linear, newdata = dtrain, type = "raw") == dtrain$X42)
## [1] 0.8698225

训练集上的准确率为86.98%,还不错。看看在测试集上的准确率。

> mean(predict(fit.linear, newdata = dtest, type = "raw") == dtest$X42)
## [1] 0.8857143

测试集上表现略好于训练集,为88.57%。

3.2 径向基核

> set.seed(123)
> fit.radial <- train(X42 ~ ., data = dtrain, method = "svmRadial",
+                     preProc = c("center", "scale"),
+                     trControl = ct)
> fit.radial$finalModel
## Support Vector Machine object of class "ksvm" 
## 
## SV type: C-svc  (classification) 
##  parameter : cost C = 0.25 
## 
## Gaussian Radial Basis kernel function. 
##  Hyperparameter : sigma =  0.0261890036312633 
## 
## Number of Support Vectors : 522 
## 
## Objective Function Value : -99.2956 
## Training error : 0.156213

检查准确率:

> mean(predict(fit.radial, newdata = dtrain, type = "raw") == dtrain$X42)
## [1] 0.843787
> mean(predict(fit.radial, newdata = dtest, type = "raw") == dtest$X42)
## [1] 0.8666667

可以看到,径向基核函数的性能比线性核函数要差一些。

4、交叉验证

K折交叉验证:将训练数据拆分为K个同样大小且不会重叠的分区,然后,用K-1个分区训练模型,并把剩下的1个分区作为测试集。这样一共进行K次,每次留出一个分区作为测试集。最后,对K个不同测试集上获得的所有估计进行汇总,来计算在未知数据上的精确度的整体估计。
使用10折交叉验证,再次对比两种核函数模型的性能。

> ctrl <- trainControl(method = "cv", number = 10)
> fit.linear.cv10 <- train(X42 ~ ., method = "svmLinear", data = dtrain,
+                          preProc = c("center", "scale"),
+                          trControl = ctrl)
> 
> set.seed(123)
> fit.radial.cv10 <- train(X42 ~ ., data = dtrain, method = "svmRadial",
+                          preProc = c("center", "scale"),
+                          trControl = ctrl)
> dotplot(resamples(list(linear = fit.linear.cv10, radial = fit.radial.cv10)))
交叉验证下不同核函数模型对比

使用10折交叉验证后,可以看到,径向基核函数的性能要优于线性核函数。
查看径向基核函数下,支持向量机模型的性能。

> # 最终模型参数
> fit.radial.cv10$finalModel
## Support Vector Machine object of class "ksvm" 
## 
## SV type: C-svc  (classification) 
##  parameter : cost C = 1 
## 
## Gaussian Radial Basis kernel function. 
##  Hyperparameter : sigma =  0.0261890036312633 
## 
## Number of Support Vectors : 459 
## 
## Objective Function Value : -294.5405 
## Training error : 0.113609
> mean(predict(fit.radial.cv10, newdata = dtrain, type = "raw") == dtrain$X42)
## [1] 0.8863905
> mean(predict(fit.radial.cv10, newdata = dtest, type = "raw") == dtest$X42)
## [1] 0.8952381

ROC曲线:

> ROSE::roc.curve(predict(fit.radial.cv10, newdata = dtrain, type = "raw"), 
+                 dtrain$X42)
训练集ROC曲线
## Area under the curve (AUC): 0.876

作者:wonphen

原文链接:https://www.jianshu.com/p/9d20968d9032

文章分类
后端
版权声明:本站是系统测试站点,无实际运营。本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 XXXXXXo@163.com 举报,一经查实,本站将立刻删除。
相关推荐