阅读 36 SEO

matlab聚类算法代码(聚类分析程序代码)

一、K均值聚类算法

算法步骤如下:

1、初始化

已知数据集合X,及事先指定聚类的总类数N,在X中随机选取N个对象作为初始的聚类中心。

2、设定迭代终止条件

通常设置最大循环次数或者聚类中心的变化误差。

3、更新样本对象所属类

根据距离准则将数据对象分配到距离最接近的类。

4、更新类的中心位置

将每一类的平均向量作为下次迭代的聚类中心。

5、重复步骤3~4,满足步骤2中的迭代终止条件时,停止

Matlab代码见下图:

K均值聚类算法-Matlab代码

K均值聚类算法-Matlab代码

二、K均值聚类算法应用举例

1、随机生成三组数据

K均值聚类算法-Matlab代码K均值聚类算法-Matlab代码

随机生成的三组数据

2、指定聚类个数及初始化各类的中心位置

K均值聚类算法-Matlab代码K均值聚类算法-Matlab代码

初始化聚类中心

3、调用K均值聚类得到聚类结果

K均值聚类算法-Matlab代码K均值聚类算法-Matlab代码

K均值聚类结果

K均值聚类算法-Matlab代码


文章分类
百科问答
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 gxwowoo@163.com 举报,一经查实,本站将立刻删除。
相关推荐