阅读 18 SEO

05_线程间如何通信

Q为什么要学习多线程通信?

A每个线程的内部有自己的私有的线程上线文,线程之间互不干扰。为了更好的利用服务器资源,我们通常需要多个线程之间进行协作。

业务目标,A、B两个线程依次输出

package co.dianjiu.thread;

public class MyThreadNoLock {
    static class MyThreadA implements Runnable{

        @Override
        public void run() {
            for (int i = 0; i < 50; i++) {
                System.out.println("MyThreadA===>" + i);
            }
        }
    }
    static class MyThreadB implements Runnable{

        @Override
        public void run() {
            for (int i = 0; i < 50; i++) {
                System.out.println("MyThreadB===>" + i);
            }
        }
    }
    public static void main(String[] args) {
        new Thread(new MyThreadA()).start();
        new Thread(new MyThreadB()).start();
    }
}

执行结果

A和B两个线程执行顺序无法控制

....

MyThreadB===>48
MyThreadA===>41
MyThreadB===>49
MyThreadA===>42
MyThreadA===>43
MyThreadA===>44
MyThreadA===>45
MyThreadA===>46
MyThreadA===>47
MyThreadA===>48
MyThreadA===>49

一、使用锁进行线程通信

根据线程和锁的关系,同一时间只有一个线程持有锁。

package co.dianjiu.thread;

public class MyThreadNoLock {

    private static Object lock = new Object();

    static class MyThreadA implements Runnable{

        @Override
        public void run() {
            //对象锁,同步代码块
            synchronized (lock){
                for (int i = 0; i < 50; i++) {
                    System.out.println("MyThreadA===>" + i);
                }
            }
        }
    }
    static class MyThreadB implements Runnable{

        @Override
        public void run() {
            //对象锁,同步代码块
            synchronized (lock){
                for (int i = 0; i < 50; i++) {
                    System.out.println("MyThreadB===>" + i);
                }
            }
        }
    }
    public static void main(String[] args) {
        new Thread(new MyThreadA()).start();
        new Thread(new MyThreadB()).start();
    }
}

执行结果

可以控制A先执行、然后B在执行,距离目标更近了一些

....

MyThreadA===>47
MyThreadA===>48
MyThreadA===>49
MyThreadB===>0
MyThreadB===>1
MyThreadB===>2
MyThreadB===>3

....

二、使用等待通知进行通信

等待通知机制建立的基础是两个线程使用了同一个对象锁,A、B两个线程先打印自己的输出后,唤醒另一个等待的线程,然后自己进入等待状态,同时释放锁。

package co.dianjiu.thread;

public class MyThreadNoLock {

    private static Object lock = new Object();

    static class MyThreadA implements Runnable{

        @Override
        public void run() {
            synchronized (lock){
                for (int i = 0; i < 50; i++) {
                    try {
                        System.out.println("MyThreadA===>" + i);
                        lock.notify();
                        lock.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                lock.notify();
            }
        }
    }
    static class MyThreadB implements Runnable{

        @Override
        public void run() {
            synchronized (lock){
                for (int i = 0; i < 50; i++) {
                    try {
                        System.out.println("MyThreadB===>" + i);
                        lock.notify();
                        lock.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                lock.notify();
            }
        }
    }
    public static void main(String[] args) {
        new Thread(new MyThreadA()).start();
        new Thread(new MyThreadB()).start();
    }
}

执行结果

此时我们完成了业务目标。

....

MyThreadA===>45
MyThreadB===>45
MyThreadA===>46
MyThreadB===>46
MyThreadA===>47
MyThreadB===>47
MyThreadA===>48
MyThreadB===>48
MyThreadA===>49
MyThreadB===>49

三、使用信号量进行通信

JDK提供了一个类似于“信号量”功能的类Semaphore,我们基于volatile关键字的自己实现的信号量通信。

package co.dianjiu.thread;

public class MyThreadVolatile {
    private static volatile int signal = 0;

    static class MyThreadVolatileA implements Runnable {

        @Override
        public void run() {
            while (signal < 50) {
                if(signal % 2 ==1) {
                    System.out.println("MyThreadA===>" + signal);
                    synchronized (this) {
                        signal=signal+1;
                    }
                }
            }
        }
    }


    static class MyThreadVolatileB implements Runnable {

        @Override
        public void run() {
            while (signal < 50) {
                if(signal % 2 ==0) {
                    System.out.println("MyThreadB===>" + signal);
                    synchronized (this) {
                        signal++;
                    }
                }
            }
        }

    }

    public static void main(String[] args) {
        new Thread(new MyThreadVolatileA()).start();
        new Thread(new MyThreadVolatileB()).start();
    }
}

执行结果

我们可以通过自定义简单的信号量实现单双号线程的打印。

....

MyThreadA===>43
MyThreadB===>44
MyThreadA===>45
MyThreadB===>46
MyThreadA===>47
MyThreadB===>48
MyThreadA===>49
MyThreadB===>50

四、使用管道流进行通信

一般使用管道流进行多线程IO流操作。

字符流 PipedWriterPipedReader

字节流 PipedOutputStreamPipedInputStream

package co.dianjiu.thread;

import java.io.IOException;
import java.io.PipedReader;
import java.io.PipedWriter;

public class MyThreadPipe {
    static class MyReaderThread implements Runnable{
        private PipedReader reader;

        public MyReaderThread(PipedReader reader) {
            this.reader = reader;
        }

        @Override
        public void run() {
            System.out.println("MyReaderThread");
            int receive = 0;
            try {
                while ((receive = reader.read()) != -1) {
                    System.out.print((char)receive);
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }
    static class MyWriterThread implements Runnable {
        private PipedWriter writer;
        public MyWriterThread(PipedWriter writer) {
            this.writer = writer;
        }
        @Override
        public void run() {
            System.out.println("MyWriterThread");
            int receive = 0;
            try {
                writer.write("https://dianjiu.co");
            } catch (IOException e) {
                e.printStackTrace();
            } finally {
                try {
                    writer.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
    }
    public static void main(String[] args) throws IOException, InterruptedException {
        PipedReader reader = new PipedReader();
        PipedWriter writer = new PipedWriter();
        //建立链接,进行通讯
        writer.connect(reader);
        new Thread(new MyReaderThread(reader)).start();
        new Thread(new MyWriterThread(writer)).start();
    }
}

执行结果

MyReaderThread
MyWriterThread
https://dianjiu.co

五、Join方法的深入理解

join()方法的源码

public final void join() throws InterruptedException {
        //相当于等待了0毫秒,进入永远等待状态
        join(0);
}

join(long)方法源码

参数1 为等待毫秒数

public final synchronized void join(long millis)
    throws InterruptedException {
        long base = System.currentTimeMillis();
        long now = 0;
        //毫秒数参数为大于0的数值
        if (millis < 0) {
            throw new IllegalArgumentException("timeout value is negative");
        }
        //等待毫秒数为0
        if (millis == 0) {
            //使用以this.isAlive为条件的this.wait调用循环;当线程终止时,将调用this.notifyAll方法。
            while (isAlive()) {
                //join()最终调用了wait(0)方法
                wait(0);
            }
        } else {
            //使用以this.isAlive为条件的this.wait调用循环;;当线程终止时,将调用this.notifyAll方法。
            while (isAlive()) {
                long delay = millis - now;
                if (delay <= 0) {
                    break;
                }
                wait(delay);
                now = System.currentTimeMillis() - base;
            }
        }
    }

join(long, int)方法源码

参数1 等待时间毫秒数

参数2 等待时间纳秒数

public final synchronized void join(long millis, int nanos)
    throws InterruptedException {
        //毫秒数参数为大于0的数值
        if (millis < 0) {
            throw new IllegalArgumentException("timeout value is negative");
        }
        //纳秒数的取值范围为0-999999
        if (nanos < 0 || nanos > 999999) {
            throw new IllegalArgumentException(
                                "nanosecond timeout value out of range");
        }
        //如果纳秒数小于500000,且毫秒数为0 则等待时间为1毫秒
        //如果纳秒数大于等于500000,且毫秒数为0 则等待时间为1毫秒
        //如果纳秒数大于等于500000,且毫秒数不为0 则等待时间为毫秒数+1
        if (nanos >= 500000 || (nanos != 0 && millis == 0)) {
            millis++;
        }
        //如果纳秒数和毫秒数都为0,则等待毫秒数为0,进入永远等待状态相当于join()
        join(millis);
    }

回顾下使用方式

package co.dianjiu.thread;public class MyThreadJoin extends Thread{    @Override    public void run(){        try {            System.out.println("子线程先睡一秒");            Thread.sleep(1000);            System.out.println("子线程睡完一秒");        } catch (InterruptedException e) {            e.printStackTrace();        }    }    public static void main(String[] args) throws InterruptedException {        MyThreadJoin a = new MyThreadJoin();        a.setName("a");        a.start();        System.out.println(a.getName() + "===>" + a.getState());        System.out.println(Thread.currentThread().getName() + "===>" + Thread.currentThread().getState());        System.out.println("主线程,没有join方法会先执行完成");    }}

子线程先睡一秒
a===>RUNNABLE
main===>RUNNABLE
主线程,没有join方法会先执行完成
子线程睡完一秒

加了join方法后

package co.dianjiu.thread;public class MyThreadJoin extends Thread{    @Override    public void run(){        try {            System.out.println("子线程先睡一秒");            Thread.sleep(1000);            System.out.println("子线程睡完一秒");        } catch (InterruptedException e) {            e.printStackTrace();        }    }    public static void main(String[] args) throws InterruptedException {        MyThreadJoin a = new MyThreadJoin();        a.setName("a");        a.start();        a.join();        System.out.println(a.getName() + "===>" + a.getState());        System.out.println(Thread.currentThread().getName() + "===>" + Thread.currentThread().getState());        System.out.println("主线程,加上join方法后会等待子线程先执行完,主线程再执行");    }}

子线程先睡一秒
子线程睡完一秒
a===>TERMINATED
main===>RUNNABLE
主线程,加上join方法后会等待子线程先执行完,主线程再执行

总结下join()方法的作用,调用了Thread的join方法,会使得当前线程进入等待状态,等待join线程执行完成后再执行当前线程。

六、Sleep方法的深入理解

sleep(long)方法源码

参数1 毫秒数

//调用的是native方法public static native void sleep(long millis) throws InterruptedException;

sleep(long, int)方法源码

参数1 毫秒数

参数2 纳秒数

public static void sleep(long millis, int nanos)    throws InterruptedException {       //毫秒数参数为大于0的数值        if (millis < 0) {            throw new IllegalArgumentException("timeout value is negative");        }        //纳秒数的取值范围为0-999999        if (nanos < 0 || nanos > 999999) {            throw new IllegalArgumentException(                                "nanosecond timeout value out of range");        }      //如果纳秒数小于500000,且毫秒数为0 则睡眠时间为1毫秒        //如果纳秒数大于等于500000,且毫秒数为0 则睡眠时间为1毫秒      //如果纳秒数大于等于500000,且毫秒数不为0 则睡眠时间为毫秒数+1        if (nanos >= 500000 || (nanos != 0 && millis == 0)) {            millis++;        }        //如果纳秒数和毫秒数都为0,则等待毫秒数为0,进入永远等待状态相当于sleep(0)        sleep(millis);    }

Qsleep、join、yield、wait区别?(阿里面试题)

Asleep(long) 、yield()都是Thread类的静态方法,都不会释放锁,但会释放CPU,两者不同的是sleep方法会进入阻塞状态,而yield会重新进入就绪状态;wait()和notify()、notifyAll() 这三个方法都是java.lang.Object的方法,会释放对象锁同时释放CPU资源,wait后进入线程等待池中等待被再次唤醒(notify随机唤醒,notifyAll全部唤醒,线程结束自动唤醒)即放入锁池中竞争同步锁;join()底层调用了wait()方法,也会释放锁,但不会释放CPU,当前运行线程调用另一个线程的join方法,当前线程进入等待池并等待另一个join线程执行完毕后才会被唤醒。

七、ThreadLocal类的深入理解

ThreadLocal为线程本地变量线程本地存储。严格来说,ThreadLocal类并不属于多线程间的通信,而是让每个线程有自己”独立“的变量,线程之间互不影响。

八、InheritableThreadLocal类

InheritableThreadLocal类与ThreadLocal类稍有不同,Inheritable是继承的意思。它不仅仅是当前线程可以存取副本值,而且它的子线程也可以存取这个副本值。

文章分类
后端
文章标签
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 gxwowoo@163.com 举报,一经查实,本站将立刻删除。
相关推荐