阅读 181

框架篇:分布式全局唯一ID

框架篇:分布式全局唯一ID

前言

每一次HTTP请求,数据库的事务的执行,我们追踪代码执行的过程中,需要一个唯一值和这些业务操作相关联,对于单机的系统,可以用数据库的自增ID或者时间戳加一个在本机递增值,即可实现唯一值。但在分布式,又该如何实现唯一性的ID

  • 分布式ID的特性

  • 数据库自增的ID

  • Redis分布式ID

  • Zookeeper分布式ID

  • 全局唯一UUID的优缺点

  • Twitter的雪花算法生成分布式ID

关注公众号,一起交流,微信搜一搜: 潜行前行

github地址,感谢star

分布式ID的特性

  • 全局唯一性,必须性

  • 幂等性,如果是根据某些信息生成,则需要保障幂等性

  • 注意安全性,ID里隐藏一些信息,不能被猜出来,也不能被猜出来 ID 如何生成

  • 趋势递增性,在查询比较时,可以判断业务操作的时间顺序

数据库自增的ID

  • 实现简单,ID单调自增,数值类型查询速度快,但是单点DB存在宕机风险,无法扛住高并发场景

CREATE TABLE FLIGHT_ORDER (    id int(11) unsigned NOT NULL auto_increment, #自增ID
    PRIMARY KEY (id),
) ENGINE=innodb;

集群下如何保证数据库ID的唯一性

  • 当随着业务发展,服务拓展到多台的大集群时,为了解决单点数据库的压力,数据库也会相应的变成一个集群,那如何保证集群下数据库ID的唯一性

  • 每一台数据库实例都设置一个起始值和增长步长
    捕获1.PNG

  • 缺点:不利于后续扩容,如果后续需要扩容还需要人工介入修改 起始值和增长步长

Redis 分布式ID

  • 假如系统有亿万的数据,依靠数据库的自增ID在分表分库之后,需要人工修改每台数据库实例,扩容性差,维护性不好

基于Redis INCR 命令生成分布式全局唯一ID

  • 服务向redis获取Id,ID则和数据库解耦,可以解决ID和分表分库的问题,而且redis比数据库性能更快,可以支撑集群服务并发获取ID的需求

  • redis的INCR命令具备了 INCR AND GET 的原子操作;redis是单进程单线程架构,INCR 命令不会出现 ID 重复

 @Autowired
 private StringRedisTemplate stringRedisTemplate; private static final String ID_KEY = "id_good_order"; public Long incrementId() {     return stringRedisTemplate.opsForValue().increment(ID_KEY);
 }

HINCRBY 命令

  • 实际上,为了存储序列号的更多相关信息,可以使用了 Redis 的 Hash 数据结构,Redis 同样为 Hash 提供 HINCRBY 命令来实现 “INCR AND GET” 原子操作

//KEY_NAME 是 hash结构对应的Key,FIELD_NAME 是hash结构的字段,INCR_BY_NUMBER是增量值redis 127.0.0.1:6379> HINCRBY KEY_NAME FIELD_NAME INCR_BY_NUMBER

宕机序列号恢复问题

  • redis是内存数据库,在没有开启RDB或AOF持久化的情况下,一旦宕机ID数据将会有丢失。即便开启了RDB持久化,由于最近一次快照时间和最新一条 HINCRBY 命令的时间有可能存在时间差,宕机后通过RDB快照恢复数据集会发生ID取值重复的情况

  • redis宕机序列号恢复方案

    • 利用关系型数据库来记录一个短时内 最大可取序列号 MAX_ID,从redis获取ID时只能取小于 MAX_ID 的序列号

    • 为了计算最大值,需要一个定时任务定期计算ID消费速度RATE,存于redis。当客户端取得 CUR_ID、RATE 和 MAX_ID,则根据 ID 消费速度 RATE 计算 CUR_ID 是否逼近MAX_ID,如果是则更新数据库的MAX_ID

Zookeeper 分布式ID

  • 利用zookeeper的持久性有序节点,可以实现自增的分布式ID,而且zookeeper是个高可用的集群服务,提交成功的消息具有持久性,因此不怕机器宕机问题,或者单机问题

<dependency>
    <groupId>org.apache.curator</groupId>
    <artifactId>curator-framework</artifactId>
    <version>4.2.0</version>
</dependency>
<dependency>
    <groupId>org.apache.curator</groupId>
    <artifactId>curator-recipes</artifactId>
    <version>4.2.0</version>
</dependency>
  • 示例

RetryPolicy retryPolicy = new ExponentialBackoffRetry(500, 3);
CuratorFramework client = CuratorFrameworkFactory.builder()
      .connectString("localhost:2181")
      .connectionTimeoutMs(5000)
      .sessionTimeoutMs(5000)
      .retryPolicy(retryPolicy)
      .build();
client.start();  
String sequenceName = "root/sequence/distributedId";
DistributedAtomicLong  distAtomicLong = new DistributedAtomicLong(client, sequenceName, retryPolicy);//使用DistributedAtomicLong生成自增序列public Long sequence() throws Exception {
    AtomicValue<Long> sequence = this.distAtomicLong.increment();    if (sequence.succeeded()) {        return sequence.postValue();
    } else {        return null;
    }
}

UUID的优缺点

  • 基于数据库,redis,zookeeper的分布式ID都高度依赖一个外部服务,对于某些场景,假如不存在这些外部服务又该怎么生成分布式的ID

  • JDK里自带一个唯一性的ID的生成器,具有全球唯一性,这就是UUID,不过它是串无意义的字符串,存储性能差,查询也很耗时,对于订单系统,不适合作为唯一ID,常见优化方案为转化为两个uint64整数存储或者 折半存储(折半后不能保证唯一性)

  • 但对于日志系统,或只是为了作为数据里可以唯一识别序列号的关联属性时,可以用UUID

String uuid = UUID.randomUUID().toString().replaceAll("-","");

Twitter 的雪花算法生成分布式ID

  • 和UUID一样,雪花算法并不依赖外部服务

  • 雪花算法时 Twitter 公司内部分布式项目采用的ID生成算法,广受国内公司好评。不依赖第三方服务,效率高
    捕获.PNG

  • Snowflake ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 数据中心(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。


1:第一个bit位(1bit):Java中long的最高位是符号位代表正负,正数是0,负数是1,一般生成ID都为正数,所以默认为0。

2:时间戳部分(41bit):毫秒级的时间,不建议存当前时间戳,而是用(当前时间戳 - 固定开始时间戳)的差值,可以使产生的ID从更小的值开始

3:工作机器id(10bit):也被叫做workId,这个可以灵活配置,机房或者机器号组合都可以。

4:序列号部分(12bit),自增值支持同一毫秒内同一个节点可以生成4096个ID

//Twitter的SnowFlake算法,使用SnowFlake算法生成一个整数public class SnowFlakeShortUrl {    //起始的时间戳
    static long START_TIMESTAMP = 1624698370256L;    //每一部分占用的位数
    static long SEQUENCE_BIT = 12;   //序列号占用的位数
    static long MACHINE_BIT = 5;     //机器标识占用的位数
    static long DATA_CENTER_BIT = 5; //数据中心占用的位数
    //每一部分的最大值
    static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);    static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);    static long MAX_DATA_CENTER_NUM = -1L ^ (-1L << DATA_CENTER_BIT);    //每一部分向左的位移
    static long MACHINE_LEFT = SEQUENCE_BIT;    static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;    static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT;    //dataCenterId + machineId 等于10bit工作机器ID
    private long dataCenterId;  //数据中心
    private long machineId;     //机器标识
    private volatile long sequence = 0L; //序列号
    private volatile long lastTimeStamp = -1L;  //上一次时间戳
    private volatile long l currTimeStamp = -1L; //当前时间戳
    
    private long getNextMill() {        long mill = System.currentTimeMillis();        while (mill <= lastTimeStamp) mill = System.currentTimeMillis();        return mill;
    }    //根据指定的数据中心ID和机器标志ID生成指定的序列号
    public SnowFlakeShortUrl(long dataCenterId, long machineId) {
        Assert.isTrue(dataCenterId >=0 && dataCenterId <= MAX_DATA_CENTER_NUM,"dataCenterId is illegal!");
        Assert.isTrue(machineId >= 0 || machineId <= MAX_MACHINE_NUM,"machineId is illegal!");        this.dataCenterId = dataCenterId;        this.machineId = machineId;
    }    //生成下一个ID
    public synchronized long nextId() {
        currTimeStamp = System.currentTimeMillis();
        Assert.isTrue(currTimeStamp >= lastTimeStamp,"Clock moved backwards");        if (currTimeStamp == lastTimeStamp) {            //相同毫秒内,序列号自增
            sequence = (sequence + 1) & MAX_SEQUENCE;            if (sequence == 0L) { //同一毫秒的序列数已经达到最大,获取下一个毫秒
                currTimeStamp = getNextMill();
            }
        } else { 
            sequence = 0L; //不同毫秒内,序列号置为0
        }
        lastTimeStamp = currTimeStamp;        return (currTimeStamp - START_TIMESTAMP) << TIMESTAMP_LEFT //时间戳部分
                | dataCenterId << DATA_CENTER_LEFT       //数据中心部分
                | machineId << MACHINE_LEFT             //机器标识部分
                | sequence;                             //序列号部分
    }    
    public static void main(String[] args) {
        SnowFlakeShortUrl snowFlake = new SnowFlakeShortUrl(10, 4);        for (int i = 0; i < (1 << 12); i++) {            //10进制
            System.out.println(snowFlake.nextId());
        }
    }
}

欢迎指正文中错误

参考文章

  • 常见分布式全局唯一ID生成策略及算法的对比

  • 基于 Redis 的序列号服务(分布式id)的设计

  • 9种 分布式ID生成方案,让你一次学个够


__EOF__

本文作者丽大佬的小跟班
本文链接:https://www.cnblogs.com/cscw/p/14939999.html


文章分类
后端
版权声明:本站是系统测试站点,无实际运营。本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 XXXXXXo@163.com 举报,一经查实,本站将立刻删除。
相关推荐