阅读 156

无锁并发框架-Disruptor的原理(一)

文章目录

  • 一、Disruptor是什么

    • 5.1、Sequence是什么

    • 5.2、数组+序列号设计的优势

    • 1、定义

    • 2、应用场景

    • 3、类似

    • 4、核心设计原理

    • 5、数据结构

    • 6、核心组件与作用

    • 7、等待策略(Wait Strategy)

    • 8、写数据

    • 9、使用


一、Disruptor是什么

1、定义

Disruptor是一个开源框架,研发的初衷是为了解决高并发下列队锁的问题,最早由LMAX(一种新型零售金融交易平台)提出并使用,能够在无锁的情况下实现队列的并发操作,并号称能够在一个线程里每秒处理6百万笔订单。

2、应用场景

生产消费者模型

3、类似

条件阻塞队列BlockingQueue,但是性能不太行。

ArrayBlockingQueue:基于数组形式的队列,通过加锁的方式,来保证多线程情况下数据的安全;
LinkedBlockingQueue:基于链表形式的队列,也通过加锁的方式,来保证多线程情况下数据的安全;
ConcurrentLinkedQueue:基于链表形式的队列,通过compare and swap(简称CAS)协议的方式,来保证多线程情况下数据的安全,
不加锁,主要使用了Java中的sun.misc.Unsafe类来实现


4、核心设计原理

Disruptor通过以下设计来解决队列速度慢的问题:1、环形数组结构:
为了避免垃圾回收,采用数组而非链表。同时,数组对处理器的缓存机制更加友好(CPU加载空间局部性原则)。2、元素位置定位:
数组长度2^n,通过位运算,加快定位的速度。下标采取递增的形式。不用担心index溢出的问题。index是long类型,即使100万QPS的处理速度,也需要30万年才能用完。3、无锁设计:
每个生产者或者消费者线程,会先申请可以操作的元素在数组中的位置,申请到之后,直接在该位置写入或者读取数据。


5、数据结构

框架使用RingBuffer来作为队列的数据结构,RingBuffer就是一个可自定义大小的环形数组。除数组外还有一个序列号(sequence),用以指向下一个可用的元素,供生产者与消费者使用。原理图如下所示:
在这里插入图片描述

5.1、Sequence是什么

Disruptor通过顺序递增的序号来编号管理通过其进行交换的数据(事件),对数据(事件)的处理过程总是沿着序号逐个递增处理。

5.2、数组+序列号设计的优势

看HashMap,在知道索引(index)下标的情况下,存与取数组上的元素时间复杂度只有O(1),而这个index我们可以通过序列号(hash值)*与数组的长度取模来计算得出,index=sequence % table.length。当然也可以用位运算来计算效率更高,此时table.length必须是2的幂次方(原理前面讲过)。所以只要是时间复杂度低,为O(1)。

6、核心组件与作用

  • RingBuffer——Disruptor底层数据结构实现,核心类,是线程间交换数据的中转地;

  • Sequencer——序号管理器,生产同步的实现者,负责消费者/生产者各自序号、序号栅栏的管理和协调,Sequencer有单生产者,多生产者两种不同的模式,里面实现了各种同步的算法;

  • Sequence——序号,声明一个序号,用于跟踪ringbuffer中任务的变化和消费者的消费情况,disruptor里面大部分的并发代码都是通过对Sequence的值同步修改实现的,而非锁,这是disruptor高性能的一个主要原因;

  • SequenceBarrier——序号栅栏,管理和协调生产者的游标序号和各个消费者的序号,确保生产者不会覆盖消费者未来得及处理的消息,确保存在依赖的消费者之间能够按照正确的顺序处理, Sequence Barrier是由Sequencer创建的,并被Processor持有;

  • EventProcessor——事件处理器,监听RingBuffer的事件,并消费可用事件,从RingBuffer读取的事件会交由实际的生产者实现类来消费;它会一直侦听下一个可用的号,直到该序号对应的事件已经准备好。

  • EventHandler——业务处理器,是实际消费者的接口,完成具体的业务逻辑实现,第三方实现该接口;代表着消费者。

  • Producer——生产者接口,第三方线程充当该角色,producer向RingBuffer写入事件。

  • Wait Strategy:Wait Strategy决定了一个消费者怎么等待生产者将事件(Event)放入Disruptor中。
    在这里插入图片描述

7、等待策略(Wait Strategy)

1、BlockingWaitStrategy
Disruptor的默认策略是BlockingWaitStrategy。在BlockingWaitStrategy内部是使用锁和condition来控制线程的唤醒。
BlockingWaitStrategy是最低效的策略,但其对CPU的消耗最小并且在各种不同部署环境中能提供更加一致的性能表现。2、SleepingWaitStrategy
SleepingWaitStrategy 的性能表现跟 BlockingWaitStrategy 差不多,对 CPU 的消耗也类似,但其对生产者线程的影响最小,
通过使用LockSupport.parkNanos(1)来实现循环等待。一般来说Linux系统会暂停一个线程约60µs,这样做的好处是,生产线程不需要
采取任何其他行动就可以增加适当的计数器,也不需要花费时间信号通知条件变量。但是,在生产者线程和使用者线程之间移动事件的平均
延迟会更高。它在不需要低延迟并且对生产线程的影响较小的情况最好。一个常见的用例是异步日志记录。3、YieldingWaitStrategy
YieldingWaitStrategy是可以使用在低延迟系统的策略之一。YieldingWaitStrategy将自旋以等待序列增加到适当的值。
在循环体内,将调用Thread.yield(),以允许其他排队的线程运行。在要求极高性能且事件处理线数小于 CPU 逻辑核心数的场景中,
推荐使用此策略;例如,CPU开启超线程的特性。4、BusySpinWaitStrategy
性能最好,适合用于低延迟的系统。在要求极高性能且事件处理线程数小于CPU逻辑核心数的场景中,推荐使用此策略;例如,CPU开启超线程的特性。


8、写数据

单线程写数据的流程:

  1. 申请写入m个元素;

  2. 若是有m个元素可以入,则返回最大的序列号。这儿主要判断是否会覆盖未读的元
    素;

  3. 若是返回的正确,则生产者开始写入元素。
    在这里插入图片描述

9、使用

Disruptor的使用


文章分类
后端
版权声明:本站是系统测试站点,无实际运营。本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 XXXXXXo@163.com 举报,一经查实,本站将立刻删除。
相关推荐